📃Surveys

A Survey of Large Language Models

  • Renmin University of China

  • 通过介绍背景、主要发现和主流技术来回顾LLMs的最新进展。重点关注LLM的四个主要方面,即预训练、适应调优、利用和能力评估。此外,总结了发展LLMs的可用资源,并讨论了未来方向的剩余问题。

Augmented Language Models: a Survey

Large Language Models Meet NL2Code: A Survey (2023 ACL)

  • Chinese Academy of Sciences

  • 对 NL2Code 的 27 个现有大型语言模型进行了全面调查,并回顾了基准和指标。在 HumanEval 基准上对所有现有模型进行直观比较。通过深入观察和分析,得出一些见解并得出结论:NL2Code 大型语言模型成功的关键因素是“大尺寸、优质数据、专家调优”。

A Survey on Model Compression and Acceleration for Pretrained Language Models (2023 AAAI)

A Survey on Evaluation of Large Language Models

  • Jilin University

  • 对大模型的这些评估方法进行了全面的回顾,重点关注三个关键维度:评估什么、评估在哪里以及如何评估。

A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT

  • Michigan State University

  • 面回顾了 PFM (Pretrained Foundation Models) 在文本、图像、图表以及其他数据模式方面的最新研究进展、挑战和机遇。该综述涵盖了自然语言处理、计算机视觉和图形学习中使用的基本组件和现有预训练方法。此外,它还探索了用于不同数据模式的高级 PFM 以及考虑数据质量和数量的统一 PFM。该评论还讨论了与 PFM 基础相关的研究,例如模型效率和压缩、安全性和隐私。

ChatGPT is not all you need. A State of the Art Review of large Generative AI models

Last updated