Real_PEFT
叫realpeft是因为感觉现在的peft方式有比较大的问题,具体哪里怪怪的等我有了比较成熟的想法再说QAQ
现有的PEFT方法总结
LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS
Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
P-Tuning: GPT Understands, Too
Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning
AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning
LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
IA3: Infused Adapter by Inhibiting and Amplifying Inner Activations
PreviousACL 2023 Tutorial: Retrieval-based Language Models and ApplicationsNextPersonality Traits&Bias in LLM
Last updated